
www.manaraa.com

J Optim Theory Appl (2017) 172:984–1007
DOI 10.1007/s10957-016-1034-7

Redefinition of Belief Distorted Nash Equilibria
for the Environment of Dynamic Games with
Probabilistic Beliefs

Agnieszka Wiszniewska-Matyszkiel1

Received: 14 January 2016 / Accepted: 8 November 2016 / Published online: 16 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, a new concept of equilibrium in dynamic games with incom-
plete or distorted information is introduced. In the games considered, players have
incomplete information about crucial aspects of the game and formulate beliefs about
the probabilities of various future scenarios. The concept of belief distorted Nash equi-
librium combines optimization based on given beliefs and self-verification of those
beliefs. Existence and equivalence theorems are proven, and this concept is compared
to existing ones. Theoretical results are illustrated using several examples: extract-
ing a common renewable resource, a large minority game, and a repeated Prisoner’s
Dilemma.

Keywords Distorted information · Dynamic games · Nash equilibrium · Belief
distorted Nash equilibrium (BDNE ) · Self-verification of beliefs
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1 Introduction

Nash equilibrium is the only concept of a solution which can be sustained in a game
where rational players, besides knowing their own strategy set and payoff as a function
of their own strategy, have complete information about the game they are playing. A
player has complete informationwhen they know the following: They are participating
in a game (i.e., interacting with other players, conscious decision makers with their
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own goals, not random “nature”), the number of those players, their strategy sets and
payoff functions, the influence of the choices of the others on payoffs, and that the other
players are rational. In dynamic games, it is assumed that players can either directly
observe the choices of the other players, or their influence on the state variable.

Actually, in the majority of real-life decision-making problems of a game-theoretic
nature, these assumptions are not fulfilled. Usually, the other players’ payoff functions
and sets of strategies are not known exactly.

This fact results in a need to introduce various concepts of equilibria with imper-
fect, incomplete, or distorted information. This branch of game theory is developing
rapidly, with numerous concepts based on various assumptions on what kind of imper-
fection is allowed: Bayesian equilibria, introduced byHarsanyi [1],Δ-rationalizability
by Battigalli and Siniscalchi [2], conjectural equilibria by Battigalli and Guaitoli [3],
cursed equilibrium considered by Eyster and Rabin [4], self-confirming equilibria by
Fudenberg and Levine [5], and studied, among others, by Azrieli [6], conjectural cat-
egorical equilibria introduced by Azrieli [7], stereotypical beliefs by Cartwright and
Wooders [8], subjective equilibria by Kalai and Lehrer [9,10], rationalizable conjec-
tural equilibria by Rubinstein and Wolinsky [11], correlated equilibria by Aumann
[12,13] (to some extent) and belief distorted Nash equilibria for set-valued beliefs
introduced by Wiszniewska-Matyszkiel ([14,15], with prerequisites in [16]). Most of
them assume that players are rational. A detailed review of these concepts can be
found in Wiszniewska-Matyszkiel [14].

Only two of the aforementioned concepts can deal with information which is not
only incomplete, but can be seriously distorted: the subjective equilibria of Kalai
and Lehrer [9,10] and belief distorted Nash equilibria (BDNE) for set-valued beliefs
of Wiszniewska-Matyszkiel [14,15]. Only BDNE is applicable in dynamic games,
including those with an infinite time horizon, in which information is gradually dis-
closed during play.

In the approaches presented in a previous, theoretical paper of the author on this
subject [14], and the paper applying these concepts to environmental economics [15],
beliefs take the form of a multivalued correspondence. Such a form of beliefs suggests
a way of defining the “anticipated” future payoff of a player as the payoff which can
be obtained given the worst realization under this belief, assuming that the player will
choose optimally in the future. We refer to this approach as the “inf-approach” (due
to the alternative used in assessing the future payoff), while the approach used in this
paper is referred to as “exp-approach.” Let us emphasize that the inf-approach, with
its pessimistic attitude to the future, is not very realistic.

To address this issue in this paper, beliefs are assumed to take the formof probability
distributions over the set of possible future trajectories of states and statistics. If players
are able to estimate the probability distribution of these parameters in the future, it is
inherent that they take into account the expected future payoff, and the verification of
beliefs can be assessed quantitatively using this probability distribution.

We introduce the concepts of pre-belief distorted Nash equilibrium (pre-BDNE),
ε-belief distorted Nash equilibrium (ε-BDNE), belief distorted Nash equilibrium
(BDNE), and various concepts of the self-verification of beliefs of the form con-
sidered. Existence and equivalence theorems are proven, and the notion of BDNE
is compared to the notions of Nash equilibrium, subjective equilibrium and BDNE
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for set-valued beliefs. These concepts are illustrated by several examples: extract-
ing a common renewable resource, a large minority game, and a repeated Prisoner’s
Dilemma.

It is worth emphasizing that the concept of BDNE, both for set-valued and proba-
bilistic beliefs, is not a concept of bounded rationality. In our approach, we assume that
players are rational, although they may have false information about the game they
are playing. This false information is such that it cannot be falsified during subsequent
play.

The paper is composed as follows. The problem is defined in Sect. 2, where the
formal definition in Sect. 2.2 is preceded by a brief introduction in Sect. 2.1. The
concepts of pre-BDNE, notions of the self-verification of beliefs, and finally, ε-BDNE
andBDNEare defined inSect. 3,where theoretical results on existence and equivalence
are also stated. In Sect. 4, some examples are studied. Appendix A is devoted to
large games and B contains a very general existence result, using a higher level of
mathematical abstraction than the main part of the paper.

2 Formulation of the Problem

This section defines a dynamic game, as well as a derived game with distorted infor-
mation and probabilistic beliefs. The dynamic game is identical to that considered in
Wiszniewska-Matyszkiel [14] based on the inf-approach, while the game with dis-
torted information substantially differs, particularly in the structure of beliefs and
expected payoffs.

2.1 Brief Introduction of the Problem and Concepts

Before giving a detailed introduction of the problem, we briefly describe it, without
full mathematical precision.

We consider a discrete time dynamic game with the set of players I, where
the payoff of player i under strategy profile S can be written as Πi (S) :=
∑T

t=t0
Pi (Si (t),uS(t),XS(t))

(1+ri )t−t0
+ Gi (XS(T+1))

(1+ri )T+1−t0
, (or only the first part in the case of an infinite

time horizon), where uS denotes a statistic describing the players’ behavior under S
(e.g., the aggregate of all the strategies used by the players), observable ex post, while
XS denotes the trajectory of the state variable resulting from choosing S, which is
defined by XS(t + 1) = φ(XS(t), uS(t)) with XS(0) = x̄ . All past and current states
are observable.

At a Nash equilibrium, the basic concept of a solution to a noncooperative game,
each player maximizes their payoff given the strategies of the remaining players.

We assume that players do not have complete information about the game they
are playing. Therefore, at each stage of the game, they formulate beliefs about the
future path of XS and uS . The beliefs formulated at time t , Bi (t, a, HS), are based on
the current decision a and the already observed part of the history HS = (XS, uS),
denoted HS|t . They take the form of a probability distribution on the set of future
paths of (XS, uS).
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These beliefs define the expected payoff of player i , Πe
i (t, H

S|t , S(t)) as the sum
of the actual current payoff at time t , Pi (S(t), uS(t), XS(t)), and the expected (with
respect to beliefs) value of the future optimal payoff along HS .

A preliminary concept of a pre-belief distorted Nash equilibrium (pre-BDNE)
says that a profile S is a pre-BDNE iff at each stage each player maximizes
Πe

i (t, H
S|t , S(t)). A belief distorted Nash equilibrium (BDNE) is a pre-BDNE S

for which (XS, uS) is the most likely path (with maximum likelihood normalized to
1), while an ε-belief distorted Nash equilibrium (ε-BDNE) is an ε-BDNE S for which
(XS, uS) has likelihood at least 1 − ε.

2.2 Formal Introduction

A game with distorted information is a tuple of the following objects:
((I,�, λ),T,X, {Di }i∈I,U, φ, {Pi }i∈I, {Gi }i∈I, {Bi }i∈I, {ri }i∈I, L), i.e., the space of
players, set of time points, set of states, sets of the players’ possible decisions, statistic,
the system’s reaction function, current payoffs, terminal payoffs, beliefs, discount
rates, and likelihood, respectively, briefly described in Sect. 2.1, and in detail in the
sequel.

The set of players is denoted by I. In order that the definitions encompass both games
with finitely many players and large games, we introduce a structure on I consisting of
a σ -field � of its subsets and a measure λ on it (in standard games with finitely many
players, � is the whole power set, while λ ≡ 1). For readers who are not familiar with
games involving a measure space of players, there is a short introduction in Appendix
A.

The game is dynamic, played over a discrete set of times T = {t0, t0 +1, . . . , T } or
T = {t0, t0 + 1, . . .}. We also introduce the symbol T denoting {t0, t0 + 1, . . . , T + 1}
for finite T and equal to T in the opposite case.

At each moment, player i chooses a decision from their decision set Di . We also
denote the common superset of these sets as D—the set of the (combined) decisions
of the players with chosen σ -field of its subsets denoted by D.

We call any measurable function δ : I → D with δ(i) ∈ Di , a static profile. The
set of all static profiles is denoted by 	static. We assume that it is non-empty.

The next important object is a finite, m-dimensional, statistic of the whole profile,
which influences players’ payoffs. Such statistics might be, e.g., aggregate extraction
in models of the exploitation of renewable resources, or prices in models of markets.
Such a definition does not reduce generality, since in games with finitely many players
this statisticmaybe thewhole profile. Formally, a statistic of a static profile is a function

U : 	static onto→ U ⊂ R
m defined by

U (δ) :=
[∫

I

gk(i, δ(i))dλ(i)

]m

k=1
(1)

for measurable functions gk : I × D → R. The resultant set U is called the set of
profile statistics.
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If Δ : T → 	static represents the choices resulting from static profiles at various
moments, thenwe denote by uΔ the function uΔ : T → U such that uΔ(t) = U (Δ(t)).

The game is played in an environment (or system) with set of states X.
Given a function uΔ : T → U, the state variable evolves according to the equation

XΔ(t + 1) = φ(XΔ(t), uΔ(t)) with the initial condition XΔ(t0) = x̄, (2)

where φ : X × U → X is called the reaction function of the system.
At each moment, player i obtains current payoff, Pi : Di ×U×X → R ∪ {−∞}.

In the case of a finite time horizon, player i also obtains a terminal payoff (at the end
of the game) defined by the function Gi : X → R ∪ {−∞}.

Players sequentially observe the history of the game: At time t , they know the
states X (s) for s ≤ t and the statistics u(s) for the chosen static profiles at moments
s < t . In order to simplify the notation, we introduce the set of histories of the
game H := X

T−t0+2×U
T−t0+1 and for such a history H ∈ H, we denote the history

observed at time t by H |t .
Given the history observed at time t , H |t , players formulate their suppositions

about future values of u and X , depending on their decision a made at time t . This is
formalized as a function describing the beliefs of player i , Bi : T×Di×H → M1 (H),
whereM1 (H) denotes the set of all probabilitymeasures onH.We assume that beliefs
Bi (t, a, H) only depend on H through H |t , and that for every H ′ in the support of
Bi (t, a, H), we have H ′|t = H |t .

Players have compound strategies dependent on time and the history of the game
observed at this time. The strategy of player i is a function Si : T × H → Di such
that Si (t, H) only depends on H through H |t . Combining the players’ strategies, we
obtain the function S : I × T × H → D.

A profile (of strategies) is a combination of strategies such that for each t and H , the
function S•(t, H) is a static profile. The set of all profiles is denoted by 	. Since the
choice of a profile S determines the history of the game, we denote this history, consist-
ing of trajectory XS and statistic uS (defined in Eqs. (1) and (2), respectively), by HS .

To simplify the notation, we consider the open-loop form of profile S, SOL : T →
	static, defined by

SOL
i (t) = Si (t, H

S). (3)

If the players choose a profile S, then the discounted payoff of player i , Πi : 	 →
R, depends only on the open-loop form of the profile and is equal to

Πi (S) =
T∑

t=t0

Pi
(
SOL
i (t), uS(t), XS(t)

)

(1 + ri )t−t0
+ Gi

(
XS(T + 1)

)

(1 + ri )T+1−t0
, (4)

where ri > 0 is the discount rate of player i . For infinite T , we set Gi ≡ 0. We assume
that the Πi (S) are well defined.

This ends the definition of the dynamic game.
However, the players do not know the profile. Therefore, in their calculations, they

can only use the expected payoff functions, Πe
i : T×H×Σ static → R, corresponding

to their beliefs.
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Πe
i (t, H

S, δ) := Pi
(
δi ,U (δ), XSOL

(t)
)

+ Vi (t + 1, Bi (t, SOL
i (t), HS))

1 + ri
, (5)

where Vi : T × (M1(H))) → R, (the function defining the expected future payoff )
represents the discounted value of player i’s expected future payoff assuming that he
acts optimally in the future under beliefs, i.e.,

Vi (t, β) = Eβvi (t, H) =
∫

I

vi (t, H)dβ(H), (6)

where the function vi : T×H → R is the present value of the future payoff of player
i under the assumption that they act optimally in the future, given u and X :

vi (t, (X, u)) = sup
d:T→Di

[
T∑

s=t

Pi (d(s), u(s), X (s))

(1 + ri )s−t + Gi (X (T + 1))

(1 + ri )T+1−t

]

. (7)

Note that this definition of expected payoff mimics, to some extent, the Bellman
equation for calculating the best responses of players’ to the strategies of the others,
used to derive Nash equilibria.

3 Nash Equilibria and Belief Distorted Nash Equilibria

One of the basic concepts in game theory, Nash equilibrium, assumes that every player
(almost every in the case of games with a continuum of players) chooses a strategy
which maximizes their payoff given the strategies of the remaining players.

Notational convention For any profile S and strategy d (both static and dynamic) of
player i , Si,d represents the modification of the profile Swhere the strategy of player
i is replaced by d.

Definition 3.1 Aprofile S is aNash equilibrium iff for a.e. i ∈ I and for every strategy
d ∈ Di , Πi (S) ≥ Πi (Si,d).

The abbreviation “a.e.” (almost every) in games with finitely many players reduces
to “every.”

3.1 Toward Belief Distorted Nash Equilibria: Pre-Belief Distorted Nash
Equilibria and their Properties

The assumption that a player knows the strategies of the remaining players, or at least
the statistic for these strategies which influences their payoff, is not usually fulfilled
in real-life situations. Moreover, the details of the other players’ payoff functions
or available strategy sets are sometimes not known precisely. Therefore, given their
beliefs, players maximize their expected payoffs.
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Definition 3.2 A profile S is a pre-belief distorted Nash equilibrium (pre-BDNE for
short) for belief B iff for a.e. i ∈ I, for every decision a of player i and every t ∈ T,
we have Πe

i (t, H
S, SOL(t)) ≥ Πe

i (t, H
S, (SOL(t))i,a).

In other words, a profile S is a pre-BDNE iff almost every player maximizes their
expected payoff given the current values of XS and uS and beliefs about their future
values.

Remark 3.1 In one-shot games (i.e., for T = t0 and G ≡ 0), a profile is a pre-BDNE
iff it is a Nash equilibrium.

�

Next, we state an existence result for games with a continuum of players.

Theorem 3.1 Let (I,�, λ) be an atomless measure space and let Di ⊆ R
n, together

with the σ -field of Borel subsets. Assume that for every t , x, H and for almost
every i , the following continuity assumptions hold: The functions Pi (a, u, x) and
Vi (t, Bi (t, a, H)) are upper semicontinuous in (a, u) jointly, while for every a, they
are continuous in u and for all k, the functions gk(i, a) are continuous in a for a ∈ Di .

Assume also that the sets Di are compact and the followingmeasurability assump-
tions hold: The graph of D• is measurable, and for every t , x, u, k, and H, the
Pi (a, u, x), ri , Vi (t, Bi (t, a, H)), and gk(i, a) are measurable in (i, a). Moreover,
assume that for each k, gk is integrably bounded, i.e., there exists an integrable func-
tion � : I → R such that for every a ∈ Di , |gk(i, a)| ≤ �(i).
Under these assumptions, there exists a pre-BDNE for B.

Theorem 3.1 states that under some measurability, compactness, and continuity
assumptions, there exists a pre-BDNE. This is a conclusion from a more general
existence result — Theorem B.2, proved by a general Nash equilibrium result from
Wiszniewska-Matyszkiel [17], using the concept of analyticity of sets. Since it requires
introducing specific terminology, for the sake of coherence and also for readers who
are less interested in nonstandard mathematics, Theorem B.2 is stated and proven
in Appendix B. The proof of Theorem 3.1 is also given in Appendix B, after the
formulation and proof of Theorem B.2.

Now we turn to show some properties of pre-BDNE for a special kind of belief.

Definition 3.3 A belief Bi has perfect foresight for a profile S, iff for all t ,
Bi (t, SOL

i (t), HS) is concentrated at {HS}.
For perfect foresight, we state the equivalence between Nash equilibria and pre-

BDNE for a continuum of players.

Theorem 3.2 Let (I,�, λ) be an atomless measure space. Assume that for all i , x, and
u, the Pi (•, u, x) are upper semicontinuous, Di are compact, supS∈	 Πi (S) < +∞
and for every S ∈ 	, maxd:T→Di Πi (Si,d) is attained.

(a) Any Nash equilibrium profile S̄ is a pre-BDNE for any belief corresponding to
perfect foresight at S̄ and all profiles S̄i,d .
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(b) If a profile S̄ is a pre-BDNE for a belief B with perfect foresight at both S̄ and
S̄i,d for a.e. player i and any of their strategies d, then it is a Nash equilibrium.

Proof In all the subsequent reasonings, we consider player i , who is not a member of
the set of players of measure 0 for whom the condition of payoff maximization (actual
for Nash equilibrium, expected for BDNE) does not hold.

In the case of a continuum of players, the statistics for the profiles, and consequently
the trajectories corresponding to them, are identical for S̄ and all S̄i,d . We denote this
statistic by u and the corresponding trajectory by X .

To continue, we need the next lemma stating that along the path of perfect foresight,
the equation for the expected payoff of player i becomes the Bellman equation for
optimizing their actual payoff, while Vi is the value function. �

Lemma 3.1 Let i be a player maximizing their payoff at a Nash equilibrium S̄, while
Ṽi is the value function for this maximization. If B has perfect foresight for both profile
S̄ and profiles S̄i,d for any d ∈ Di , then for all t , the values of Vi and Ṽi coincide and
S̄OL
i (t) ∈ Argmaxa∈Di

Πe
i (t, H

S̄, (S̄OL(t))i,a).

Proof (of Lemma3.1)Note that, given the profile of strategies of the remaining players
coincides with S̄, the value function for the decision problem of player i can be written
as Ṽi : T → R, unlike in standard dynamic optimization problems, since, because of
the negligibility of every single player, the trajectory X is fixed.

Ṽi (t) = sup
d:T→Di

[
T∑

s=t

Pi (d(s), u(s), X (s)) ·
(

1

1 + ri

)s−t

+Gi (X (T + 1)) ·
(

1

1 + ri

)T+1−t
]

(8)

(recall that for infinite T , we take G ≡ 0).
Since the payoff iswell defined and themaximum is attained at S̄i , the value function

fulfills the Bellman equation

Ṽi (t) = sup
a∈Di

[

Pi (a, u(t), X (t)) + Ṽi (t + 1) ·
(

1

1 + ri

)]

(9)

and

S̄i (t) ∈ Argmaxa∈Di

[

Pi (a, u(t), X (t)) + Ṽi (t + 1) ·
(

1

1 + ri

)]

. (10)

Using Eq. (8) to substitute an expression for Ṽi (t + 1) on the r.h.s. of the Bellman
equation, Eq. (9), we obtain

Ṽi (t) = sup
a∈Di

[Pi (a, u(t), X (t)))

+ 1

1+ri

(

sup
d:T→Di

{
T∑

s=t+1

Pi (d(s), u(s), X (s))

(1 + ri )s−(t+1)
+ Gi (X (T + 1))

(1+ri )T+1−(t+1)

})]

.
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Note that the last supremum is equal not only to Ṽi (t+1), but also to vi (t+1, (X, u)).
Since the belief assigns probability one to the history (X, u) for all profiles S̄i,d , this
supremum is also equal to Vi (t + 1, Bi (t, a, H S̄i,d )). Therefore,

Ṽi (t) = sup
a∈Di

[

Pi (a, u(t), X (t)) + Vi (t + 1, Bi (t, a, H S̄i,d ))

1 + ri

]

= sup
a∈Di

Πe
i

(

t, S̄i,d ,
(
SOL(t)

)i,a
)

.

We only have to show that S̄i (t) ∈ Argmaxa∈Di
Πe

i (t, H
S̄,

(
S̄OL(t)

)i,a
).

From the definition of Πe
i , Eq. (5), this set is equal to

Argmaxa∈Di

[

Pi (a, u(t), X (t)) + Vi (t + 1, Bi (t, a, H S̄i,d ))

1 + ri

]

= Argmaxa∈Di

[

Pi (a, u(t), X (t)) + Ṽi (t + 1)

1 + ri

]

.

Hence Eqs. (8) and (10) are satisfied, which ends the Proof of Lemma 3.1. �

Statement (a) from Theorem 3.2 is an immediate conclusion from Lemma 3.1.
Statement (b): Let S̄ be a pre-BDNE for B which has perfect foresight at S̄

and all S̄i,d . We consider Ṽi as in Lemma 3.1, Eq. (8). From the definition of pre-
BDNE and perfect foresight, S̄i (t) ∈ Argmaxa∈Di

Πe
i (t, H

S̄,
(
S̄OL(t))i,a

)
, which is

equal toArgmaxa∈Di

[
Pi (a, u(t), X (t))+ 1

1+ri
maxd:T→Di

(∑T
s=t+1

Pi (d(s),u(s),X (s))
(1+ri )s−(t+1)

+Gi (X (T+1))
(1+ri )T−t)

)]
. From Eq. (8), this set is equal to Argmaxa∈Di

[Pi (a, u(t), X (t))

+
(

1
1+ri

)
· Ṽi (t + 1)

]
, the set in Expression (10).

At this stage, we need to show the sufficiency of the Bellman equation with the
appropriate terminal condition. For the finite time horizon case, Eq. (9) and Expression
(10) (with d instead of S̄i ), together with Ṽi (T + 1) = Gi (X (T + 1)), are sufficient
conditions for the function Ṽi and strategy d to be the value function and optimal
strategy, respectively.

In the infinite horizon case, the standard form of the terminal condition does not
work in the case of unbounded payoffs, sowe use aweaker version fromWiszniewska-
Matyszkiel [18], Theorem 1. The required conditions for our problem are

(i) limsupt→∞Ṽi (t) ·
(

1
1+ri

)t−t0 ≤ 0 and

(ii) if limsupt→∞Ṽi (t)·
(

1
1+ri

)t−t0
< 0, then for every d : T → Di ,Πi (S̄i,d) = −∞.

Condition (i) holds from the assumption that theΠi are bounded from above, while

(ii) holds, since the existence of a tk → ∞ such that limk→∞ Ṽi (tk) ·
(

1
1+ri

)tk−t0
< 0

when at least one of Πi (Si,d) is greater than −∞ contradicts the convergence of the
series in the definition of Πi , see Eq. (4).
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Since Ṽi fulfills (9), the set Argmaxa∈Di

[
Pi (a, u(t), X (t)) +

(
1

1+ri

)
· Ṽi (t + 1)

]

is the set of optimal actions of player i at time t , given u and X . Since we have this
property for a.e. i , S̄ is a Nash equilibrium.

�

The next equivalence result holds for repeated games.

Theorem 3.3 Consider a repeated game where players’ belief functions are indepen-
dent of their strategies, such that for every player i , supd,u |Pi (d, u, x̄)| < +∞.

(a) If (I,�, λ) is an atomless measure space, then a profile S is a pre-BDNE for B, iff
it is a Nash equilibrium, iff it is a sequence of Nash equilibria in static one-stage
games.

(b) Any profile S where the strategies of a.e. player are independent of the observed
history is a pre-BDNE for B, iff it is a Nash equilibrium, iff it is a sequence of
Nash equilibria in static one-stage games.

Proof In repeated games, the only variable influencing future payoffs (via the depen-
dence of the strategies of the remaining players on the history) is the statistic of the
profile.

(a) In gameswith an atomless space of players, the decision of a single player does not
influence the statistic. Therefore, the optimization problem faced by player i can
be decomposed into the optimization of Pi (a, u(t), x̄) at each separate moment
(the discounted payoffs obtained in the future are finite, since the current payoffs
are bounded).

(b) If the strategies of the remaining players do not depend on the history of the
game, then the current decision of a player does not influence their future payoffs,
actual or expected. Therefore, the optimization problem faced by player i can be
decomposed into the optimization of Pi (t, a, u(t), x̄) at each separate moment
(again, the discounted payoffs obtained in the future are finite, since the current
payoffs are bounded).

�


3.2 Toward Belief Distorted Nash Equilibrium: Self-Verification

In this subsection, we concentrate on the problem of the consistency of a game’s
history with players’ beliefs.

In dynamic gameswithmany stages, especially gameswith an infinite time horizon,
we cannot check whether beliefs are consistent with reality by assuming that the game
is repeated many times.

Using the inf-approach, where beliefs are given by the sets of histories regarded
as possible, the method of verification is obvious. If a history regarded as impossi-
ble happens, it means that beliefs have been falsified. Otherwise, there is no need to
update beliefs and we can regard them as being consistent with reality. Without any
ranking of trajectories regarded as being possible, this is the only reasonable method
of verification. In the case of probabilistic beliefs, the method of verification is not so
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obvious. It could be adapted from the inf-approach, where the support of a distribution
is treated as the set of possible histories, but this leads to a loss of the information intro-
duced by the probability distribution. Therefore, we introduce a function measuring
the consistency of beliefs with a game’s history.

First, given a probability distribution β on H, we introduce a function, called the
likelihood function, that measures to what extent the histories corroborate β. It assigns
to each probability distribution on H a function on the set of infinite histories corre-
sponding to the belief.

Definition 3.4 A function L : M1(H) → [0, 1]H is called a likelihood function iff

(a) If H is an atom of β, then L(β)(H̄) := β(H̄)
maxH∈H β(H)

.
(b) If β is a continuous probability distribution with density μ,

then L(β)(H̄) := μ(H̄)
maxH∈H μ(H)

if the maximum is attained.
(c) Otherwise, the function L satisfies

(i) if β({H1}) > β({H2}), then L (β) (H1) > L (β) (H2);
(ii) for each β, there exists H with L(β)(H) = 1 (the “most likely history” is

always of likelihood 1).

This definition gives a unique function in the case of discrete distributions. In
the case of continuous distributions, we can take any density function, which leads
to certain non-uniqueness. In the case of mixed distributions, we can choose any
function satisfying (a)–(c), since the relation between atoms and the atomless part is
not predefined.

From this moment on, we fix a likelihood function L , which is used in further
definitions.

The first thing that we consider is verification of beliefs.
Given a likelihood function, we can define a measure of the consistency of beliefs

along a profile S̄ as the minimum likelihood of H S̄ , taken over time, according to that
belief. However, we have to solve a technical problem resulting from the notational
convention of using elements from the set H to denote both the observed history H |t
and predictions of the future for all t . In fact, given the beliefs at time t , we only want
to measure the likelihood of the predictions: X (s) and u(s) for s > t . The observed
history, H |t , i.e., X (s) for s ≤ t and u(s) for s < t , does not cause any problem,
since with probability one, H |t = H S̄|t . So, only u(t) may cause problems. Note that
u(t) has no effect on Bi (t, •, •). Hence, if we replace it by something else, we do
not change any of the previously defined concepts. Therefore, to define the method of
verifying beliefs, we slightly modify this irrelevant part of the history:

B̄t
i (t, a, H)(A) := Bi (t, a, H)

({
(X, u) ∈ H : ∃u′, u′(s)

= u(s) for s �= t, (X, u′) ∈ A
})

.

Definition 3.5 A function l S̄ : I × M1(H) → R+ is called a measure of the
ex post consistency of beliefs {Bi }i∈I with reality for profile S̄ iff l S̄i (Bi ) :=
inf t∈T L(B̄t

i (t, S̄
OL
i (t), H S̄))(H S̄).
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Given ε ≥ 0, we can define the following properties of ε-self-verification of
beliefs.

Definition 3.6 (a) A collection of beliefs B = {Bi }i∈I is perfectly ε-self-verifying iff
for every pre-BDNE S̄ for B, then for a.e. i ∈ I, we have l S̄i (Bi ) ≥ 1 − ε.

(b) A collection of beliefs B = {Bi }i∈I is potentially ε-self-verifying iff there exists
a pre-BDNE S̄ for B such that for a.e. i ∈ I, we have l S̄i (Bi ) ≥ 1 − ε.

In order to interpret these concepts, let us assume that players, who respond best to
their beliefs, have an incentive to change their beliefs only if the measure of their ex
post consistency is less than 1 − ε. In this case, perfect ε-self-verification of beliefs
means that players never have any incentive to change their beliefs, while potential
ε-self-verification of beliefs means that there is a possibility that they will have no
incentive to change their beliefs.

3.3 Belief Distorted Nash Equilibrium

Definition 3.7 A profile S is an ε-belief distorted Nash equilibrium for a collection of
beliefs B = {Bi }i∈I (ε-BDNE for short) iff it is a pre-BDNE for B and l S(B)(HS) ≥
1 − ε.

A 0-BDNE is called a BDNE.

If we assume that players feel an incentive to change their beliefs only if themeasure
of the beliefs’ ex post consistency is less than 1 − ε, then at an ε-BDNE, beliefs are
never changed.

Proposition 3.1 Theorems 3.2 and 3.3 and Remark 3.1 still hold when pre-BDNE for
specific beliefs is replaced by BDNE for those beliefs. �


This means that we have equivalence between BDNE and Nash equilibria for those
classes of games for which equivalence results hold for pre-BDNE and Nash equi-
libria: under assumptions of boundedness, when beliefs are independent of a player’s
own decision, in games with a continuum of players, one-shot games and repeated
games.

3.4 Comparison of BDNE and ε-BDNE to Similar Concepts

We can compare the notions of BDNE and ε-BDNE introduced in this paper with
Nash equilibria, subjective equilibria, as well as BDNE for set-valued beliefs.

First, we compare our concept to Nash equilibria. From Proposition 3.1, Nash
equilibria and BDNE coincide, for example, in games with a continuum of players or
repeated games with bounded payoffs and when beliefs are independent of a player’s
decisions. However, in general, the concept of BDNE is neither equivalent nor an
extension to the concept of Nash equilibrium. In the examples considered in Sect. 4,
we compare Nash equilibria to BDNE for specific models.
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Next, we compare BDNE to the most related concepts of equilibrium in games
with incomplete information. When distorted information is considered, as mentioned
before, only two of the concepts of equilibriumwithout complete information can deal
with it.

The subjective equilibria of Kalai and Lehrer [9,10] are used in the environ-
ment of repeated games or games that can be repeated. Decisions are taken at
each moment without foreseeing the future, and beliefs—a stochastic environmen-
tal response function—are based on history and the decision applied at the present
stage of the game. It is assumed that the current decision does not influence future
play. Hence, players just optimize given their beliefs at each stage separately. The
condition applied in subjective equilibrium theory is that beliefs are not contradicted
by observations, i.e., that the frequencies of various results correspond to the assumed
probability distributions.

Whenwe compare the concept of BDNE for probabilistic beliefs to subjective equi-
libria, there is an apparent similarity: Beliefs are probabilistic, players optimize the
expected value of their payoff given those beliefs, and the condition that beliefs are
not contradicted by observations is added. However, subjective equilibria are adapted
to repeated games, and their extension to multistage games is not obvious. Moreover,
using the subjective equilibrium approach, a player’s beliefs, based on the history
observed, describe the probability distribution of reactions to the decision of a player
by the unknown system (which plays the role of a statistic in our formulation) at this
stage only. Given such beliefs, players optimize their expected payoffs. No equilib-
rium condition is added, only the condition that the frequencies of various reactions
correspond to the assumed belief.

Belief distorted Nash equilibria (BDNE) for set-valued beliefs (the inf-approach),
introduced by the author in [14], as our current concept of BDNE, apply to mul-
tistage games. At each stage, players choose decisions maximizing, given their
belief correspondences, their guaranteed payoffs (for the realization regarded as
being the worst possible) from that moment on. In order for such a profile of
decisions to be a pre-BDNE, we add the condition that the value of the statis-
tic of the profile which influences players’ payoffs and the behavior of the state
variable is foreseen correctly at each stage, as considered in this paper. Under
the assumption that beliefs have perfect foresight, in games with a continuum of
players, this notion coincides with the concept of Nash equilibrium (a result anal-
ogous to Theorem 3.2 of this paper). Finally, a profile is a BDNE iff it is a
pre-BDNE and the actual trajectory of the game is in the belief correspondence.
In this paper, beliefs are modelled using a set of probability measures instead of a
multivalued correspondence, and the optimal expected payoff replaces the optimal
guaranteed payoff. A likelihood function is introduced to verify the consistency of
beliefs.

It is worth emphasizing that, if we compare set-valued beliefs and probabilistic
beliefswith a uniformdistribution on the same set, then the concepts of self-verification
in both approaches are exactly the same. However, the BDNE are different, since using
the inf-approach, the guaranteed future payoff is considered instead of the expected
payoff, which leads to more risk averse behavior.
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4 Examples

As the first example of a game with distorted information, we consider a model of a
renewable resource which is the common property of all its users. This model, in a
slightly different formulation, was first defined in Wiszniewska-Matyszkiel [19] and
afterward examined in Wiszniewska-Matyszkiel [14] as an example showing some
interesting properties of belief distorted Nash equilibria under the inf-approach. Here,
we use it to illustrate the exp-approach.

4.1 A Common Ecosystem

Let us consider two versions of a game of exploiting a common ecosystem: either
with n players ({1, . . . , n} with the normalized counting measure) or using the unit
interval [0, 1] with the Lebesgue measure to describe the set of players. The statistic
is the aggregate of the profile, i.e., g(i, a) = a. The reaction function φ(x, u) =
x(1 − max(0, u − ζ )), where ζ > 0 is the regeneration rate, and the initial state is
x̄ > 0. The sets of available strategies are given by Di = [0, (1 + ζ )]. The current
payoff functions are Pi (a, u, x) = ln(ax), where ln 0 is understood as −∞. The
discount rate for all players is r > 0. The time horizon is+∞. In this example, the so-
called tragedy of the commons is present in a very drastic form—in the continuum of
players case, the players deplete the resource in a finite time at every Nash equilibrium.

The fundamental results fromWiszniewska-Matyszkiel [19] regard the Nash equi-
libria of this game. We need them as the starting point for analysis, since we want to
compare pre-BDNE and ε-BDNE to Nash equilibria. Rewritten to fit the formulation
of this paper, the results regarding Nash equilibria are as follows.

Proposition 4.1 Let I = [0, 1]. No dynamic profile such that any set of players of
positivemeasure get finite payoffs is an equilibrium, and every dynamic profile yielding
depletion of the system at any finite time (i.e., ∃t̄ s.t. X (t̄) = 0) is a Nash equilibrium.
At every Nash equilibrium, for every player, the payoff is −∞.

Proposition 4.2 Let I = {1, . . . , n}. S̄ ≡ max
(
nr(1+r)
1+nr , ζ

)
is a Nash equilibrium,

and at every Nash equilibrium, the payoffs are finite.

The Proof of Proposition 4.2 uses a standard technique for solving the Bellman
equation, while the proof of Proposition 4.1 applies a decomposition method from
Wiszniewska-Matyszkiel [20].

By Theorem 3.2 and Proposition 3.1, in the case of a continuum of players, any
Nash equilibrium is a BDNE for perfect foresight.

We are interested in pre-BDNE that are notNash equilibria.One interesting problem
is to find a belief for which the resource is not depleted at any pre-BDNE in the
continuum of players case. Moreover, we want to design a belief such that it is enough
to “teach” a relatively small set of players, while the others still hold their original
beliefs. The belief we are going to consider is of the form—“it is me who can save the
system: if I restrict my exploitation to some level, then with probability one the system
will not be destroyed within a finite time, while if I exceed this limit, the systemwill be
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destroyed in a finite time with positive probability.” Formally, we state the following
proposition for a general class of such beliefs.

Proposition 4.3 Let I = [0, 1]. Consider any belief correspondence such that for
every i ∈ J ⊂ I, where J is of positive measure, t ∈ T, H ∈ H, there exist ε1, ε2, ε3 >

0 and constants (1 + ζ ) > ε1 > δ(i, t, H) > 0 such that Bi (t, a, H) assigns a
positive measure to the set of histories (X, u) such that for every s > t , X (s) = 0 if
a > (1 + ζ ) − δ(i, t, H), while if a ≤ (1 + ζ ) − δ(i, t, H), then for every s > t , we
have X (t+1) ≥ ε2 ·e−ε3t with probability 1. For every profile S which is a pre-BDNE
for this belief, for a.e. i ∈ J, we have SOL

i (t) ≤ (1 + ζ ) − δ(i, t, H), and X (t) > 0
for every t .

Proof Obviously, for every player i ∈ J, the decision at time t maximizingΠe
i for any

strategy profile of the remaining players is not greater than (1 + ζ ) − δ(i, t, H)—
the maximal level of extraction such that Vi (t + 1, Bi (t, a, HS)) �= −∞, since
Πe

i (t, H
S, SOL(t)) ≥ ∑T

s=t ln
(
((1 + ζ ) − δ(i, t, H)) · ε2 · e−ε3t

) · (1 + r)−t ≥
≥ ∑T

s=t −ε3 · t · ln (((1 + ζ ) − ε1) · ε2) · (1 + r)−t > −∞.
We have X (t0) > 0. If ν := ∫

J
δ(i, t, H)dλ(i), then X (t + 1) ≥ X (t) ·

(1 − (((1 + ζ ) − ν) − ζ )) = X (t) · ν > 0, so X (t) > 0 implies X (t + 1) > 0.
�


This result has an obvious interpretation: Ecological education can make people
sacrifice their current utility in order to protect the systemeven if they, in fact, constitute
a continuum. It is sufficient that they believe their decisions really have an influence on
the system. The opposite situation is also possible: If people believe that they individ-
ually have no influence on the system, then they behave like a continuum. Depletion
of the resource, which is impossible at a Nash equilibrium from Proposition 4.2, may
happen at a pre-BDNE, which we prove as the next result.

Proposition 4.4 Let I = {1, . . . , n}. Consider a belief correspondence such that there
exists t such that for every i and H, Bi (t, a, H) assigns a positive probability to the
set of (X, u) for which for some s > t , X (s) = 0. Then any dynamic profile, including
profiles S such that for some t̄ , X S(t̄) = 0, is a pre-BDNE.

Proof For every i , t , and a, Vi (t + 1, Bi (t, a, H)) = −∞. Therefore, each choice of
the players is in the set of best responses to such a belief. �


Now let us consider the problem of ε-self-verification of such beliefs and check
whether pre-BDNE are ε-BDNE.

Proposition 4.5 (a) Let J be a set of players of positive measure. Assume that the
beliefs of the remaining players, \J, are independent of their own decisions and
they assign probability 0 to the set of histories for which X (t) = 0 for some t.
There exists a belief that is perfectly ε-self-verifying for some ε < 1 such that for
each player from J, the assumptions of Proposition 4.3 are fulfilled.

(b) Aprofile S̄ forwhich players fromJ choose (1+ζ )−δ(i, t, H), while the remaining
players choose (1 + ζ ) is an ε-BDNE for these beliefs.

123



www.manaraa.com

J Optim Theory Appl (2017) 172:984–1007 999

(c) Consider a belief correspondence such that there exists t such that for a.e. i
and every H, Bi (t, a, H) assigns a positive probability to the set of histories H ′
which are admissible (i.e., there exists a profile S such that H ′ = HS) and, given
this, there exists a time moment st > t for which X (st ) = 0. Any such belief
correspondence is potentially ε-self-verifying for some ε < 1.

(d) Every profile S̄ resulting in depletion of the resource in a finite time is an ε-BDNE
for some beliefs defined in c).

(e) Points (a)–(d) hold for ε = 0.

Proof (a) and (b) We construct such a belief. For the players from \J, this belief does
not depend on a and is concentrated on the set {(X, u) : ∀t X (t) �= 0}. We specify this
belief after some calculations.

Let ν := λ(J). Consider a strategy profile S̄ such that the players i ∈ J choose
S̄i (t, H) = α for some α ∈ [ζ, 1 + ζ ], while for i /∈ J, S̄i (t, H) = (1 + ζ ). Then
the statistic for this profile at time t is equal to u(t) = (1 + ζ )(1 − ν) + να, while
the trajectory corresponding to it fulfills X (t + 1) = X (t)(1 − max(0, u(t) − ζ ) =
X (t) · ν · ((1 + ζ ) − α).

We consider a belief Bi such that for s > t :

(i) every history in its support fulfills u(s) = (1 + ζ )(1 − ν) + να,
(ii) X (s + 1) ≥ X (s) · ν · ((1 + ζ ) − α) for all i /∈ J whatever a is and for i ∈ J only

for a ≤ α,
(iii) for i ∈ J and a > α, Bi (t, a, H) assigns a positive probability to the set of

histories with X (s) = 0 for some s > t ,
(iv) L(Bi (t, a, H)) ≥ 1 − ε on the set of histories fulfilling (i)–(iii).

For such a belief, the decision maximizing Πe
i for every player i from J is α, while

for the players from \J the optimal choice is (1+ ζ ). Therefore, all the pre-BDNE for
this belief fulfill the above assumptions, which implies perfect ε-self-verification.

(c) and (d) Since from Proposition 4.4, every profile is a pre-BDNE for such a
belief correspondence, S̄ is a pre-BDNE. Hence, if L(Bi (t, a, H)) ≥ 1 − ε on a set
of admissible trajectories such that for some s > t , X (s) = 0, and this set contains S̄,
we have potential ε-self-verification.

(e) First, rewrite the proof of (a) with the additional assumption in the definition
of the beliefs that H S̄ for S̄ from (b) is of maximal likelihood for beliefs along H S̄ .
Analogously, do the same for S̄ from (d) while rewriting (c). �


4.2 The El Farol Bar Problem with a Continuum of Players or a Public Good
with Congestion

Here we present an extension of the model presented by Brian Arthur [21] as the El
Farol bar problem to a large game. There are players who choose at each time whether
to stay at home, represented by 0, or to go to the bar, represented by 1. If the bar is
overcrowded, then it is better to stay at home. The less it is crowded, the better it is to
go.
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Consider the space of players represented by the unit interval with the Lebesgue
measure. The game is repeated. Hence, the state variable is trivial and is omitted in
the notation. The statistic of a static profile is U (δ) := ∫

I
δ(i)dλ(i).

In our model, the effects of congestion are reflected by the current payoff function,
Pi (d, u) := d · ( 1

2 − u
)
.

First, we state the equivalence between Nash equilibria, pre-BDNE, BDNE, and
subjective equilibria for this model.

Proposition 4.6 (a) If the Bi are independent of a, then the set of pre-BDNE coincides
with the set of Nash equilibria, which is equal to the set of profiles such that for
every t , u(t) = 1

2 .
(b) The union of the sets of BDNE over beliefs that are independent of a player’s

own actions coincides with the set of Nash equilibria and pure strategy subjective
equilibria. For every profile in this set, for every t , u(t) = 1

2 .

Proof (a) The former equivalence is implied by Theorem 3.2 or 3.3. The latter one is
trivial.

(b) We know that the set of pre-BDNE for beliefs independent of a player’s own
choice coincides with the set of Nash equilibria. So, the set of BDNE is a subset
of the set of Nash equilibria. What remains to be proved is the fact that each Nash
equilibrium is a BDNE for some beliefs from this class.

To prove this, let us take a profile S whose statistic, u, is equal to 1
2 for all t and

beliefs B having perfect foresight for S (so, they are concentrated on this u) and all
Si,d . This profile is a pre-BDNE and BDNE for B.

Since every Nash equilibrium is a subjective equilibrium, the only fact that remains
to be proved is that at every subjective equilibrium, u(t) = 1

2 . The environmental
response function assigns a probability distribution describing a player’s beliefs about
u(t). All the players who believe that P[u(t) > 1

2 ] is greater than P[u(t) < 1
2 ] choose

0, while those who believe the opposite choose 1, the remaining players may choose
either of the two strategies. If the number of players choosing 0 is greater than the
number of those choosing 1 with positive probability, then the event u(t) < 1

2 happens
more frequently than the event u(t) > 1

2 , which contradicts the beliefs of the players
who choose 0. �


Next, let us state some self-verification results.

Proposition 4.7 Consider a belief independent of the players’ own decisions.

(a) Assume B = {Bi }i∈I is such that for every profile S which is a pre-BDNE for B,
for a.e. i , every a ∈ {0, 1}, and every time t, L (

Bi (t, a, HS)
)
( 12 ,

1
2 , . . .) ≥ 1− ε

for some ε < 1. Then B is perfectly ε-self-verifying and S is an ε-BDNE.
(b) Assume B = {Bi }i∈I is such that for every profile S which is a pre-BDNE for

B, there exists t̄ such that for a.e. i , every a ∈ {0, 1}, Bi (t̄, a, HS)({u : ∃t >

t̄, u(t) �= 1
2 }) = 1 with L

(
Bi (t, a, HS)

)
equal to 0 outside this set. For every

profile S̄ which is a pre-BDNE for this profile, for a.e. i , we do not have potential
ε-self-verification for any ε < 1.

�
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Proposition 4.7 states that every pre-BDNE for beliefs assigning a sufficiently large
likelihood to u ≡ 1

2 , is an ε-BDNE and such beliefs are perfectly ε-self-verifying,
while beliefs which for every pre-BDNE have u(t) �= 1

2 for some t with probability
one, are not even potentially ε-self-verifying.

4.3 Repeated Prisoner’s Dilemma

Although the concepts of BDNE are better adapted to games with many players, we
present a simple example of a two-player game—the Prisoner’s Dilemma—repeated
infinitely many times.

There are two players who have two available strategies at each stage: cooperate,
coded as 1, and defect, coded as 0. The decisions are made simultaneously. Therefore,
a player does not know the decision of their opponent. We assume that the statistic
is the whole profile. If both players cooperate, then they get a payoff of C . If they
both defect, they get a payoff of N . If only one of the players cooperates, then the
cooperator gets a payoff of A, while the defector gets R. These payoffs are ranked as
follows A < N < C < R.

Using the notation of this paper, the payoff function can be written as

Pi (a, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C for a, u−i = 1;
A for a = 1, u−i = 0;
R for a = 0, u−i = 1;
N for a, u−i = 0.

Obviously, the strictly dominant pair of defecting strategies (0, 0) is the only Nash
equilibrium in the one-stage game, while a sequence of such decisions also constitutes
a Nash equilibrium in the repeated game, as well as a BDNE, which we can easily
prove by considering beliefs that are independent of a player’s current decision. We
check whether a pair of cooperative strategies can also constitute a BDNE. In order
to do this, let us consider any beliefs B̄ of the form “if I defect now, then the other
player will always defect, while if I cooperate now, then the other player will always
cooperate” with Bi (t, 1, H) assigning maximal probability to the history H ′ with
H ′|t = H |t and H(s) = [1, 1] for s ≥ t .

The pair of grim trigger GT strategies “cooperate until the first defection of the other
player, then defect” constitutes a Nash equilibrium if the discount rates are small. This
does not hold for a pair of “cooperate” CE strategies.

Proposition 4.8 If both ri are small enough, then:

(a) Thepair (GT,GT) is aBDNE for B̄ and aNash equilibrium;moreover, the interval
of ri for which GT is a BDNE is larger than the interval for which it is a Nash
equilibrium;

(b) All profiles of the same open-loop form as (GT,GT), including the pairs (CE,CE)

and (GT,CE), are also BDNE for B̄, while profiles of any other open-loop form
are not pre-BDNE for B̄;

123



www.manaraa.com

1002 J Optim Theory Appl (2017) 172:984–1007

(c) There exists beliefs B̄ fulfilling (a) which are perfectly self-verifying.

Proof We consider B̄ such that for every H ∈ H∞, B̄i (t, 0, H) is concentrated on
{H ′ ∈ H∞ : ∀s > t (H(s))−i = 0} and B̄i (t, 1, H) is concentrated on {H ′ ∈ H∞ :
∀s > t (H(s))−i = 1} with Bi (t, 1, H)({H ′ : H ′|t = H |t , ∀s ≥ t H ′(s) = (1, 1)})
being maximal (over the set of all histories H ′ with H ′|t = H |t ).

(a) We start by proving that the profile (GT,GT) is a Nash equilibrium. To do
this, consider a player’s best response to GT from moment t onwards. Assume that
at time t this player chooses to defect. Then their maximal payoff for such a profile
from time t on is R + ∑∞

s=t+1
N

(1+ri )(s−t) , while by playing GT, their payoff is C +
∑∞

s=t+1
C

(1+ri )(s−t) . The condition for GT to be optimal is (R−C) ·ri < C−N , which
holds for small ri .

Next, we prove that GT is also a BDNE for B̄, i.e., that it is a pre-BDNE and that
the actual history is of likelihood 1 at every moment t . Consider moment t and history
H .

We have Vi (t, Bi (t, 0, H)) = ∑∞
s=t

N
(1+ri )(s−t) = (1+ri )·N

ri
and Vi (t, Bi (t, 1, H)) =

∑∞
s=t

R
(1+ri )(s−t) = (1+ri )·R

ri
.

Therefore, for player i , without loss of generality player 1, Πe
1 (t, H, (0, 1)) =

R + N
r1
, while Πe

1 (t, H, (1, 1)) = C + R
r1
.

Hence, cooperation is better than defection when (R −C) · r1 < R − N . For these
values of r1, GT is a pre-BDNE for B̄ and no profile with a different open-loop form
can be a pre-BDNE for B̄. Since the statistic for (GT,GT) is equal to (1, 1) at every
moment, the likelihood of the resulting history is equal to one at every moment t .
Therefore, the measure of the consistency of beliefs is one and the profile (GT,GT)

is a BDNE.
(b) From (a) and the fact that both strategies GT and CE behave in the same way if

the other player does not defect, which leads to the same open-loop form as (GT,GT).
(c) The perfect self-verification of B̄ is a consequence of this and the fact that

at every pre-BDNE for B̄, the history is H (GT,GT) ≡ (1, 1), which is of maximal
probability and therefore, of likelihood 1 at every moment t . �


Since this game is repeated, we can compare the concept of BDNE with subjective
equilibria. At a subjective equilibrium, players maximize their expected payoff at
each stage given their beliefs about current decision of the opponent. Since defection
dominates cooperation, players should defect at each stage, regardless of their beliefs.
It should also be noted that under the concept of subjective equilibrium, punishment
is impossible.

5 Conclusions

This paper introduces a new notion of equilibrium—Belief Distorted Nash Equilib-
rium (BDNE) for probabilistic beliefs. The notion of BDNE is especially applicable
in dynamic games and repeated games. Existence and equivalence theorems are
proved and concepts of self-verification are introduced. These theoretical results
are illustrated by examples: extraction of a common renewable resource, a large
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minority game, and a repeated Prisoner’s Dilemma. The self-verification of vari-
ous beliefs is analyzed for these examples. In the case of the model of extracting
a common resource, the results suggest that appropriate ecological education is of
great importance, since, in some cases, it can be the only way to guarantee sustain-
ability. This paper shows that we have to be conscious of the existence of beliefs,
which, although often inconsistent with reality, can be regarded as rational if they
have the property of self-verification. If we replace the word “beliefs” by “academic
models of dynamic decision-making problems of a game-theoretic nature, used by
their participants,” then our results indicate the danger that models inconsistent with
reality may be regarded as scientifically valid, since they have the property of self-
verification: They suggest behavior which results in the confirmation of the theories
assumed.
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Appendix A

Games with a Measure Space of Players

Games with a measure space of players are usually perceived as a synonym of games
with infinitely many players also called large games. In order to make it possible to
evaluate the influence of an infinite set of players on aggregate variables, a measure is
introduced on the σ -field of subsets of the set of players. However, the notion games
with a measure space of players also encompasses games with finitely many players,
since the counting measure on a power set may be considered.

Large games were introduced in order to illustrate situations where the number
of agents is large enough to make a single agent insignificant—negligible. However,
the impact of a set of players of positive measure is not negligible. This happens in
many real-life situations: in competitive markets, on the stock exchange, or when we
consider the emission of greenhouse gases or the similar global effects of exploitation
of the common global ecosystem.

Although it is possible to construct models with countably many players that illus-
trate this phenomenon, they are generally difficult to copewith. Therefore, the simplest
examples of large games are so-called games with continuum of players, where play-
ers constitute an atomless measure space, usually the unit interval with the Lebesgue
measure. If, additionally, we consider at least one atomic player, then we call such a
game a mixed large game.

The first attempts to use models with a continuum of players are contained
in Aumann [22] and Vind [23]. The following are theoretical works on large
games: Schmeidler [24], Mas-Colell [25], Balder [26], Wieczorek [27], Wiszniewska-
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Matyszkiel [17], Carmona and Podczeck [28], and Balbus et al. [29]. The general
theory of dynamic games with a continuum of players is still being developed by, e.g.,
Wiszniewska-Matyszkiel [20] for games with a common global state variable, Lasry
and Lions [30] for stochastic mean field games where each player is associated with a
private state variable and Wiszniewska-Matyszkiel [31] for games with both common
global and private state variables.

Introducing a continuum of players rather than a finite number, however large, can
essentially change the properties of equilibria and the way in which they are derived,
even if the measure of the space of players is preserved in order to make the results
comparable. Such an aggregate-preserving modification to games does not reflect a
situation in which new decision makers enter a game, but a situation in which the
same “mass” of individuals participating in the game is decomposed into smaller
units—decision makers. For example, in models of global ecological problems, the
same “mankind” can be decomposed into a set of players as countries (n players),
individuals or firms (a continuum of players). In spite of the differences between the
methods used and some qualitative differences, some limit properties can be proven.
Such comparisons were made by the author in [19,32].

Appendix B

General Existence Result and Proof of Theorem 3.1

Here, we prove and generalize Theorem 3.1, using a theorem on the existence of a
Nash equilibrium from Wiszniewska-Matyszkiel [17].

Before formulating this theorem, we have to define some notions used in it.

Definition B.1 The symbol diagX denotes the diagonal in X
2: diagX = {(x, x) |

x ∈ X}.
If (X,X , λ) is a measure space, then X denotes the completion of X with respect

to λ.
A family of sets X is called compact iff for every finite sequence of sets

{Xn ∈ X }n∈N, the intersection
⋂

n∈NXn is non-empty.
If (X,X ) is a measurable space, then a subset of X is called X -analytic iff it can

be obtained as a projection of a measurable subset of X × [0, 1] (with the σ -field of
Borel subsets considered on [0, 1]). The family of all X -analytic sets are denoted by
A(X ).

If (X,X ) is ameasurable space, then a function f : X → R is calledX -analytically
measurable iff the inverse images of the Borel subsets of R are X -analytic.

We consider a game with an atomless space of players (I,�, λ), the space of strate-
gies (D,D), sets of strategies Di , with statistics defined as U (δ) = ∫

I
gk(i, δi )dλ(i)

and payoff functions Πi (δ) = Pi (δi ,U (δ)). The following assumptions are made:

A1. The space of strategies D is such that the diagonal diagD is D ⊗D-measurable
and D is a measurable image of a measurable space (Z,Z) which is an analytic
subspace of a measurable space (Q,Q) such that the σ -field Q is contained in
A(V), where V generated by a compact countable family of sets.
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A1’. The space of strategies D is such that diagD is D ⊗ D-measurable and D is
a measurable image of a measurable space (Z,Z) which an analytic subspace
of a separable compact topological space Q (with the σ -field of Borel subsets
B(Q)).

A2. For almost every i , the set Di is non-empty and compact.
A3. The function Pi is upper semicontinuous for almost every i .
A4. The graph of D is � ⊗ D-analytic.
A5. The function Pi (a, •) is continuous for almost every i and every a ∈ Di .
A6. For every u, the function P•(•, u)|GrD is � ⊗ D-analytically measurable.
A7. The functions gk are measurable, integrably bounded, such that the gk(i, •) are

continuous on Di for almost every i .

Theorem B.1 If assumptions A1 and A2–A7 are fulfilled and the space (I,�, λ) is
complete, or if A1’ and A2–A7 are fulfilled, then there exists a Nash equilibrium.

Wewant to apply TheoremB.1 to stage games with distorted informationGt,H , i.e.,
games with the set of players I, the sets of their strategies Di and the payoff functions
Πe

i (t, H, δ). Some of the conditions have to be rewritten.
A3t,H . The functions Pi (a, u, x) and Vi (t + 1, Bi (t, a, H)) are upper semicontin-

uous in (a, u) for almost every i (where x = X (t) for H = (X, u)).
A5t,H . The functions Pi (a, u, x) and Vi (t +1, Bi (t, a, H)) are continuous in u for

almost every i and every a ∈ Di .
A6t,H . For every u, the functions (i, a) �→ Pi (a, u, x) and (i, a) �→ Vi (t +

1, Bi (t, a, H)) are � ⊗ D-analytically measurable, while r is �-analytically mea-
surable.

Theorem B.2 Let (I,�, λ) be an atomless measure space.

(a) If (I,�, λ) is complete and A1, A2, A4, A7, and for all (t, H), A3(t,H), A5(t,H)

and A6(t,H) are fulfilled, then there exists a pre-BDNE for B.
(b) If A1’, A2, A4, A7, and for all (t, H), A3(t,H), A5(t,H) and A6(t,H) are fulfilled,

then there exists a pre-BDNE for B.

Proof Since a pre-BDNE is a sequence of profiles of decisions constituting Nash
equilibria in the games Gt,HS , we consider a specific time moment t and the actual
history of the game H = HS .

We show that the expected payoff function, Pi (a, u, x)+ 1
1+ri

Vi (t+1, Bi (t, a, H)),
together with Di , fulfills the assumptions of Theorem B.1.

Assumptions A3 and A5 are trivial. Only the measurability assumption A6 is not
immediate. Since the composition f ◦g of an analytically measurable function f with
a measurable function g is analytically measurable and the analytical measurability of
functions intoR is preserved by addition, multiplication and division (if well defined),
the function (i, a) �→ Pi (a, u, x) + 1

1+ri
Vi (t + 1, Bi (t, a, H)) is � ⊗ D-analytically

measurable.
Therefore, all the assumptions of Theorem B.1 hold for Gt,HS , which implies the

existence of a Nash equilibrium inGt,HS . Since we have this condition for all t and H ,
the resulting sequence of equilibria constitutes a pre-BDNE in our gamewith distorted
information. �
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Let us note that the assumptions of Theorem B.2 are in quite a complicated
form. Simplifying them to the original functions and correspondences is not always
possible—e.g., proving the continuity of vi in the second argument can be done under
the assumption of the compactness of the set of dynamic strategies available to player
for a given history. However, this cannot be assumed in the case of an infinite time
horizon.

Theorem B.2 immediately implies Theorem 3.1.

Proof (of Theorem 3.1) Obviously, a measurable set is analytic, while the measura-
bility of a function implies its analytic measurability. The measurable space Rn with
Borel subsets fulfills both conditions A1 and A1’. Therefore, from Theorem B.2, there
exists a pre-BDNE. �
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